Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 154417



Upload your image

DSS Images   Other Images

Related articles

The Classical Algol XZ UMa - Observations and Analysis
Not Available

Fundamental properties of pre-main sequence stars in young, southern star forming regions: metallicities
Aims. The primary motivation for this project is to search formetal-rich star forming regions, in which, stars of super-solarmetallicity will be created, as hopefully, will be extra-solar planetsorbiting them! The two aims of this project are: 1) to show that oursample stars are young, lithium rich, magnetically active andnon-accreting kinematic members of their respective regions. 2) Tomeasure the metallicity for such members. Methods. The feroséchelle spectrograph together with eso's 2.2 m telescope, wasused to obtain high resolution (R = 32 000) spectra for each of ourweak-lined T-Tauri target stars. The wavelength range of the spectra is≃4000{-}8000 Å. Results. We find (pre-main sequence)model-dependent isochronal ages of the Lupus, Chamaeleon and CrA targetsto be 9.1 ± 2.1 Myr, 4.5 ± 1.6 Myr and 9.0 ± 3.9Myr respectively. The majority of the stars have Li i 6707.8 Åequivalent widths similar to, or above those of, their similar massPleiades counterparts, confirming their youthfulness. Most stars arekinematic members, either single or binary, of their regions. We find amean radial velocity for objects in the Lupus cloud to be RV=+2.6± 1.8 km s-1, for the Chamaeleon i & ii clouds,RV=+12.8 ± 3.6 km s-1 whereas for the CrA cloud, wefind RV=-1.1 ± 0.5 km s-1. All stars are coronally andchromospherically active, exhibiting X-ray and Hα emission levelsmarginally less, approximately equal or superior to that of their olderIC 2602/2391 and/or Pleiades counterparts. All bar three of the targetsshow little or no signature of accretion from a circumstellarenvironment, according to their positions in a J-K/H-K'diagram. For the higher quality spectra, we have performed an iron-linemetallicity analysis for five (5) stars in Chamaeleon, four (4) stars inLupus and three (3) stars in the CrA star forming regions. These resultsshow that all three regions are slightly metal-poor, with marginallysub-solar metallicities, with <[Fe/H]> = -0.11 ± 0.14,-0.10 ± 0.04 and -0.04 ± 0.05 respectively. Conclusions. Asample of stars in several nearby, young star-forming regions has beenestablished, the majority of which is young, lithium rich, magneticallyactive and are non-accreting kinematic members of their respectiveclouds. Within the errors, each region is essentially of solarmetallicity.

Elemental abundances in the Blanco 1 open cluster
High-resolution spectroscopy is used to determine the detailed chemicalabundances of a group of eight F- and G-type stars in the young opencluster Blanco 1. An average [Fe/H] of +0.04 +/- 0.02 (internal error)+/- 0.04 (external error) is found, considerably lower than a previousspectroscopic estimate for this cluster. The difference is due mainly toour adoption of significantly cooler temperatures that are consistentwith both photometric and spectroscopic constraints. Blanco 1 exhibitssubsolar [Ni/Fe](-0.18 +/- 0.01 +/- 0.01), [Si/Fe](-0.09 +/- 0.02 +/-0.03), [Mg/Fe](-0.14 +/- 0.02 +/- 0.03) and [Ca/Fe](-0.09 +/- 0.03 +/-0.03); ratios that are not observed among nearby field stars. Thematerial from which Blanco 1 formed may not have been well mixed withinterstellar matter in the galactic disc, which tallies with its currentlocation about 240pc below the galactic plane. A simultaneous deficit ofNi and alpha elements with respect to Fe is hard to reconcile with mostpublished models of yields from supernovae of types Ia and II. Therevised abundances for Blanco 1 indicate that overall radiativeopacities in its stars, and hence convective zone properties at a givenmass, are similar to those in the Pleiades at approximately the sameage. This can explain a previous observation that the Li-depletionpatterns of G- and K-type stars in the two clusters areindistinguishable. The lower overall metallicity of Blanco 1 now makesit less attractive as a target for discovering transiting, short-periodexoplanets.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The ACS Virgo Cluster Survey. VII. Resolving the Connection between Globular Clusters and Ultracompact Dwarf Galaxies
NO>1Based on observations with the NASA/ESA Hubble Space Telescopeobtained at the Space Telescope Science Institute, which is operated bythe association of Universities for Research in Astronomy, Inc., underNASA contract NAS 5-26555.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

Mg II chromospheric radiative loss rates in cool active and quiet stars
The Mg II k emission line is a good indicator of the level ofchromospheric activity in late-type stars. We investigate the dependenceof this activity indicator on fundamental stellar parameters. To thispurpose we use IUE observations of the Mg II k line in 225 late-typestars of luminosity classes I-V, with different levels of chromosphericactivity. We first re-analyse the relation between Mg II k lineluminosity and stellar absolute magnitude, performing linear fits to thepoints. The ratio of Mg II surface flux to total surface flux is foundto be independent of stellar luminosity for evolved stars and toincrease with decreasing luminosity for dwarfs. We also analyse the MgII k line surface flux-metallicity connection. The Mg II k emissionlevel turns out to be not dependent on metallicity. Finally, the Mg II kline surface flux-temperature relation is investigated by treatingseparately, for the first time, a large sample of very active and normalstars. The stellar surface fluxes in the k line of normal stars arefound to be strongly dependent on the temperature and slightly dependenton the gravity, thus confirming the validity of recently proposedmodels. In contrast, data relative to RS CVn binaries and BY Dra stars,which show very strong chromospheric activity, are not justified in theframework of a description based only on acoustic waves and uniformlydistributed magnetic flux tubes so that they require more detailedmodels.

Differential rotation and star-spot evolution on HK Aqr in 2001 and 2002
We present images of the rapidly rotating (Prot= 0.431 d)M1.5Ve dwarf HK Aqr, from data obtained during 2001 and 2002. Star-spotsare found distributed at a range of latitudes during both observingseasons, but unlike other solar-type rapid rotators of higher mass, HKAqr does not show a strong polar cap at either epoch. In addition to thesurface brightness images, we make use of the four-night time-base overwhich the 2002 observations were made, in order to derive an estimate ofthe latitudinal dependent rotation on HK Aqr. We find that theequator-lap-pole time lies in the range -1449 to +448 d. Although verysmall, we are therefore unable to determine whether the degree ofdifferential rotation is in the solar or anti-solar sense.

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The Detached Solar-Type Binary CV Boo
Not Available

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Boron Benchmarks for the Galactic Disk
Sixteen Population I solar-type dwarfs have been selected to ascertainthe baseline B abundance in the Galactic disk for a range of a factor of4 in metallicity: from [Fe/H] of -0.5 to +0.1. All the stars selectedare undepleted in Be, which ensures that they have also retained theirfull initial abundance of B. Evaluation of the trend of B with Feprovides a means to study the evolution of B in the Galactic disk. Weobserved 16 bright stars around the B I 2497 Å line, using theSTIS echelle spectrograph on HST. New observations of Li and Be in somestars were made, and previous abundance studies of Li and Be in thesestars were reevaluated using revised parameters and a modified spectralsynthesis code for consistency with the B measurements. Abundances of Bwere calculated by spectrum synthesis with the revised MOOG code, whichaccounts for the increased opacity in the UV due to metals; the LTE Babundances were then corrected for non-LTE effects. Four additionalstars with undepleted Be have HST B observations, which increase oursample to 20. For these disk stars there is a shallow slope for B versusFe and Be versus Fe, such that as Fe increases by a factor of 4, B andBe increase by 1.7 times. The slope for BLTE versus Fe is0.31+/-0.09, for BNLTE versus Fe 0.40+/-0.12, and for Beversus Fe 0.38+/-0.14. We have estimated the effect of additional UVopacity from Mg and find that an increase of 0.3 dex in Mg results in ahigher B abundances by 0.1 dex for all the disk stars. Individual starsare not consistently above (or below) the mean in both B and Be,implying that the star-to-star differences are not due to variations inthe elemental content of the ``natal'' clouds. We find that the trend ofB abundance with [Fe/H] is consistent with the general trend observed inhalo stars. If we connect the halo and disk stars, then an increase inthe Fe abundance by 103 is accompanied by increases of 100times in B and 550 times in Be. However, fitting two separate relationsfor the disk and the halo stars results in a somewhat steeper slope forBe for the halo stars (1.08+/-0.07) relative to the disk stars(0.38+/-0.14). This is the case for B also in LTE, with Bhalo(0.90+/-0.07) versus Bdisk (0.32+/-0.12). However, the NLTE Babundance increases more slowly for halo stars than the Be abundancedoes; since this is not predicted by light-element synthesis ordepletion, we suggest that a full NLTE analysis would be preferable tomaking the (small) corrections to the LTE abundances. Some of the lowestmetallicity stars are thought to have only upper limits on the Babundance; if that is the case, the NLTE B slope is steeper, nearing1.0. The abundance of B in the disk stars is observed to be a factor of~15+7-5 more than the abundance of Be in thesestars, a result consistent with the predictions of Galactic cosmic-ray(GCR) spallation, B/Be=15+/-5. The upper envelope for Li versus Feyields Li/B and Li/Be ratios that, when coupled with models andpredictions, indicate that 20%-45% of Li might be produced by GCRs.While there is no evidence to support the production of B by neutrinospallation, we cannot rule it out.Based on observations obtained with the NASA/ESA Hubble Space Telescope(HST) through the Space Telescope Science Institute, which is operatedby the Association of Universities for Research in Astronomy, Inc.,under NASA contract NAS5-26555.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Rotationally Supported Virgo Cluster Dwarf Elliptical Galaxies: Stripped Dwarf Irregular Galaxies?
New observations of 16 dwarf elliptical galaxies (dEs) in the VirgoCluster indicate that at least seven dEs have significant velocitygradients along their optical major axis, with typical rotationamplitudes of 20-30 km s-1. Of the remaining nine galaxies inthis sample, six have velocity gradients of less than 20 kms-1 kpc-1, while the other three observations hadtoo low a signal-to-noise ratio to determine an accurate velocitygradient. Typical velocity dispersions for these galaxies are ~44+/-5 kms-1, indicating that rotation can be a significant componentof the stellar dynamics of Virgo dEs. When corrected for the limitedspatial extent of the spectral data, the rotation amplitudes of therotating dEs are comparable to those of similar-brightness dwarfirregular galaxies (dIs). Evidence of a relationship between therotation amplitude and galaxy luminosity is found and, in fact, agreeswell with the Tully-Fisher relation. The similarity in the scalingrelations of dIs and dEs implies that it is unlikely that dEs evolvefrom significantly more luminous galaxies. These observations reaffirmthe possibility that some cluster dEs may be formed when the neutralgaseous medium is stripped from dIs in the cluster environment. Wehypothesize that several different mechanisms are involved in thecreation of the overall population of dEs and that stripping ofinfalling dIs may be the dominant process in the creation of dEs inclusters like Virgo.

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

On the determination of oxygen abundances in chromospherically active stars
We discuss oxygen abundances derived from [O I] λ6300s and the OI triplet in stars spanning a wide range in chromospheric activitylevel, and show that these two indicators yield increasingly discrepantresults with higher chromospheric/coronal activity measures. While theforbidden and permitted lines give fairly consistent results forsolar-type disk dwarfs, spuriously high O I triplet abundances areobserved in young Hyades and Pleiades stars, as well as in individualcomponents of RS CVn binaries (up to 1.8 dex). The distinct behaviour ofthe [O I]-based abundances which consistently remain near-solar suggeststhat this phenomenon mostly results from large departures from LTEaffecting the O I triplet at high activity level that are currentlyunaccounted for, but also possibly from a failure to adequately modelthe atmospheres of K-type stars. These results suggest that some cautionshould be exercised when interpreting oxygen abundances in activebinaries or young open cluster stars.Based on observations collected at the European Southern Observatory,Chile (Proposals 64.L-0249 and 071.D-0260).Table \ref{tab_data} is only available in electronic form athttp://www.edpsciences.org

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Oxygen trends in the Galactic thin and thick disks
We present oxygen abundances for 72 F and G dwarf stars in the solarneighbourhood. Using the kinematics of the stars we divide them into twosub-samples with space velocities that are typical for the thick andthin disks, respectively. The metallicities of the stars range from[Fe/H] ≈ -0.9 to +0.4 and we use the derived oxygen abundances of thestars to: (1) perform a differential study of the oxygen trends in thethin and the thick disk; (2) to follow the trend of oxygen in the thindisk to the highest metallicities. We analyze the forbidden oxygen linesat 6300 Å and 6363 Å as well as the (NLTE afflicted) tripletlines around 7774 Å. For the forbidden line at 6300 Å wehave spectra of very high S/N (>400) and resolution (R ≳ 215000). This has enabled a very accurate modeling of the oxygen line andthe blending Ni lines. The high internal accuracy in our determinationof the oxygen abundances from this line is reflected in the very tighttrends we find for oxygen relative to iron. From these abundances we areable to draw the following major conclusions: (i) That the [O/Fe] trendat super-solar [Fe/H] continues downward which is in concordance withmodels of Galactic chemical evolution. This is not seen in previousstudies as it has not been possible to take the blending Ni lines in theforbidden oxygen line at 6300 Å properly into account; (ii) Thatthe oxygen trends in the thin and the thick disks are distinctlydifferent. This confirms and extends previous studies of the otherα-elements; (iii) That oxygen does not follow Mg at super-solarmetallicities; (iv) We also provide an empirical NLTE correction for theinfrared O I triplet that could be used for dwarf star spectra with aS/N such that only the triplet lines can be analyzed well, e.g. stars atlarge distances; (v) Finally, we find that Gratton et al. (1999)overestimate the NLTE corrections for the permitted oxygen triplet linesat ˜7774 Å for the parameter space that our stars span.Based on observations collected at the European Southern Observatory, LaSilla and Paranal, Chile, Proposals #65.L-0019, 67.B-0108, and69.B-0277.The full Table 4 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/415/155

HD 199143 and HD 358623: Two recently identified members of the β Pictoris moving group
HD 199143 and HD 358623 (BD-17°6128) are two sets of binary starswhich are physically associated and 48 pc from Earth. We presentheliocentric radial velocities and high lithium abundances whichestablish these stars as members of the ˜12 Myr-old β PictorisMoving Group. We also present mid-IR photometric measurements which showno firm evidence for warm dust around all four stars.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars
Based on spectra from F and G dwarf stars, we present elementalabundance trends in the Galactic thin and thick disks in the metallicityregime -0.8<˜ [Fe/H] <˜ +0.4. Our findings can besummarized as follows. 1) Both the thin and the thick disks show smoothand distinct abundance trends that, at sub-solar metallicities, areclearly separated. 2) For the alpha -elements the thick disk showssignatures of chemical enrichment from SNe type Ia. 3) The age of thethick disk sample is in the mean older than the thin disk sample. 4)Kinematically, there exist thick disk stars with super-solarmetallicities. Based on these findings, together with other constraintsfrom the literature, we discuss different formation scenarios for thethick disk. We suggest that the currently most likely formation scenariois a violent merger event or a close encounter with a companion galaxy.Based on kinematics the stellar sample was selected to contain starswith high probabilities of belonging either to the thin or to the thickGalactic disk. The total number of stars are 66 of which 21 belong tothe thick disk and 45 to the thin disk. The analysis is based onhigh-resolution spectra with high signal-to-noise (R ~ 48 000 and S/Ngtrsim 150, respectively) recorded with the FEROS spectrograph on LaSilla, Chile. Abundances have been determined for four alpha -elements(Mg, Si, Ca, and Ti), for four even-nuclei iron peak elements (Cr, Fe,Ni, and Zn), and for the light elements Na and Al, from equivalent widthmeasurements of ~ 30 000 spectral lines. An extensive investigation ofthe atomic parameters, log gf-values in particular, have been performedin order to achieve abundances that are trustworthy. Noteworthy is thatwe find for Ti good agreement between the abundances from Ti I and TiIi. Our solar Ti abundances are in concordance with the standardmeteoritic Ti abundanceBased on observations collected at the European Southern Observatory, LaSilla, Chile, Proposals #65.L-0019(B) and 67.B-0108(B).Full Tables \ref{tab:linelist} and \ref{tab:abundances} are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/527

On the link between rotation, chromospheric activity and Li abundance in subgiant stars
The connection rotation-CaII emission flux-lithium abundance is analyzedfor a sample of bona fide subgiant stars, with evolutionary statusdetermined from HIPPARCOS trigonometric parallax measurements and fromthe Toulouse-Geneva code. The distribution of rotation and CaII emissionflux as a function of effective temperature shows a discontinuitylocated around the same spectral type, F8IV. Blueward of this spectraltype, subgiants have a large spread of values of rotation and CaII flux,whereas stars redward of F8IV show essentially low rotation and low CaIIflux. The strength of these declines depends on stellar mass. Theabundance of lithium also shows a sudden decrease. For subgiants withmass lower than about 1.2 Msun the decrease is located laterthan that in rotation and CaII flux, whereas for masses higher than 1.2Msun the decrease in lithium abundance is located around thespectral type F8IV. The discrepancy between the location of thediscontinuities of rotation and CaII emission flux and log n(Li) forstars with masses lower than 1.2 Msun seems to reflect thesensitivity of these phenomena to the mass of the convective envelope.The drop in rotation, which results mostly from a magnetic braking,requires an increase in the mass of the convective envelope less thanthat required for the decrease in log n(Li). The location of thediscontinuity in log n(Li) for stars with masses higher than 1.2Msun, in the same region of the discontinuities in rotationand CaII emission flux, may also be explained by the behavior of thedeepening of the convective envelope. The more massive the star is, theearlier is the increase of the convective envelope. In contrast to therelationship between rotation and CaII flux, which is fairly linear, therelationship between lithium abundance and rotation shows no cleartendency toward linear behavior. Similarly, no clear linear trend isobserved in the relationship between lithium abundance and CaII flux. Inspite of these facts, subgiants with high lithium content also have highrotation and high CaII emission flux.

STELIB: A library of stellar spectra at R ~ 2000
We present STELIB, a new spectroscopic stellar library, available athttp://webast.ast.obs-mip.fr/stelib. STELIB consists of an homogeneouslibrary of 249 stellar spectra in the visible range (3200 to 9500Å), with an intermediate spectral resolution (la 3 Å) andsampling (1 Å). This library includes stars of various spectraltypes and luminosity classes, spanning a relatively wide range inmetallicity. The spectral resolution, wavelength and spectral typecoverage of this library represents a substantial improvement overprevious libraries used in population synthesis models. The overallabsolute photometric uncertainty is 3%.Based on observations collected with the Jacobus Kaptein Telescope,(owned and operated jointly by the Particle Physics and AstronomyResearch Council of the UK, The Nederlandse Organisatie voorWetenschappelijk Onderzoek of The Netherlands and the Instituto deAstrofísica de Canarias of Spain and located in the SpanishObservatorio del Roque de Los Muchachos on La Palma which is operated bythe Instituto de Astrofísica de Canarias), the 2.3 mtelescope of the Australian National University at Siding Spring,Australia, and the VLT-UT1 Antu Telescope (ESO).Tables \ref{cat1} to \ref{cat6} and \ref{antab1} to A.7 are onlyavailable in electronic form at http://www.edpsciences.org. The StellarLibrary STELIB library is also available at the CDS, via anonymous ftpto cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/433

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:17h05m16.90s
Apparent magnitude:6.01
Distance:20.383 parsecs
Proper motion RA:-16.8
Proper motion Dec:-334.8
B-T magnitude:6.682
V-T magnitude:6.057

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 154417
TYCHO-2 2000TYC 398-1908-1
USNO-A2.0USNO-A2 0900-09295337
BSC 1991HR 6349
HIPHIP 83601

→ Request more catalogs and designations from VizieR