Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

NGC 3811


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

Active and Star-forming Galaxies and Their Supernovae
To investigate the extent to which nuclear starbursts or other nuclearactivity may be connected with enhanced star formation activity in thehost galaxy, we perform a statistical investigation of supernovae (SNe)discovered in host galaxies from four samples: the Markarian galaxiessample, the Second Byurakan Survey (SBS) sample, the north Galactic pole(NGP) sample of active or star-forming galaxies, and the NGP sample ofnormal galaxies. Forty-seven SNe in 41 Mrk galaxies, 10 SNe in six SBSgalaxies, 29 SNe in 26 NGP active or star-forming galaxies, and 29 SNein 26 NGP normal galaxies have been studied. We find that the rate ofSNe, particularly core-collapse (Types Ib/c and II) SNe, is higher inactive or star-forming galaxies in comparison with normal galaxies.Active or star-forming host galaxies of SNe are generally of latermorphological type and have lower luminosity and smaller linear sizethan normal host galaxies of SNe. The radial distribution of SNe inactive and star-forming galaxies shows a higher concentration toward thecenter of the active host galaxy than is the case for normal hostgalaxies, and this effect is more pronounced for core-collapse SNe.Ib/c-type SNe have been discovered only in active and star-forminggalaxies of our samples. About 78% of these SNe are associated with H IIregions or are located very close to the nuclear regions of these activegalaxies, which are in turn hosting AGNs or starburst nuclei. Besidesthese new results, our study also supports the conclusions of severalother earlier papers. We find that Type Ia SNe occur in all galaxytypes, whereas core-collapse SNe of Types Ib/c and II are found only inspiral and irregular galaxies. The radial distribution of Type Ib SNe intheir host galaxies is more centrally concentrated than that of Type IIand Ia SNe. The radial distances of Types Ib/c and II SNe, from thenuclei of their host galaxies, is larger for barred spiral hosts.Core-collapse SNe are concentrated in spiral arms and are often close toor in the H II regions, whereas Type Ia SNe show only a looseassociation with spiral arms and no clear association with H II regions.

Measuring shapes of galaxy images - II. Morphology of 2MASS galaxies
We study a sample of 112 galaxies of various Hubble types imaged in theTwo Micron All Sky Survey (2MASS) in the near-infrared (NIR; 1-2 μm)J, H and Ks bands. The sample contains (optically classified)32 ellipticals, 16 lenticulars and 64 spirals acquired from the 2MASSExtended Source Catalogue (XSC).We use a set of non-parametric shape measures constructed from theMinkowski functionals (MFs) for galaxy shape analysis. We useellipticity (ɛ) and orientation angle (Φ) as shapediagnostics. With these parameters as functions of area within theisophotal contour, we note that the NIR elliptical galaxies withɛ > 0.2 show a trend of being centrally spherical andincreasingly flattened towards the edge, a trend similar to images inoptical wavelengths. The highly flattened elliptical galaxies showstrong change in ellipticity between the centre and the edge. Thelenticular galaxies show morphological properties resembling eitherellipticals or disc galaxies. Our analysis shows that almost half of thespiral galaxies appear to have bar-like features while the rest arelikely to be non-barred. Our results also indicate that almost one-thirdof spiral galaxies have optically hidden bars.The isophotal twist noted in the orientations of elliptical galaxiesdecreases with the flattening of these galaxies, indicating that twistand flattening are also anticorrelated in the NIR, as found in opticalwavelengths. The orientations of NIR lenticular and spiral galaxies showa wide range of twists.

Starbursts in barred spiral galaxies. VI. HI observations and the K-band Tully-Fisher relation
This paper reports a study of the effect of a bar on the neutralhydrogen (HI) content of starburst and Seyfert galaxies. We also makecomparisons with a sample of ``normal'' galaxies and investigate howwell starburst and Seyfert galaxies follow the fundamental scalingTully-Fisher (TF) relation defined for normal galaxies. 111 Markarian(Mrk) IRAS galaxies were observed with the Nançay radiotelescope,and HI data were obtained for 80 galaxies, of which 64 are newdetections. We determined the (20 and 50%) linewidths, the maximumvelocity of rotation and total HI flux for each galaxy. Thesemeasurements are complemented by data from the literature to form asample of Mrk IRAS (74% starburst, 23% Seyfert and 3% unknown) galaxiescontaining 105 unbarred and 113 barred ones. Barred galaxies have lowertotal and bias-corrected HI masses than unbarred galaxies, and this istrue for both Mrk IRAS and normal galaxies. This robust result suggeststhat bars funnel the HI gas toward the center of the galaxy where itbecomes molecular before forming new stars. The Mrk IRAS galaxies havehigher bias-corrected HI masses than normal galaxies. They also showsignificant departures from the TF relation, both in the B and K bands.The most deviant points from the TF relation tend to have a strongfar-infrared luminosity and a low oxygen abundance. These resultssuggest that a fraction of our Mrk IRAS galaxies are still in theprocess of formation, and that their neutral HI gas, partly of externalorigin, has not yet reached a stationary state.Based on observations obtained at the large radiotelescope ofObservatoire de Nançay, operated by Observatoire de Paris.Tables 5 and 6 are only (and Table 4 also) available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/515

The PDS versus Markarian starburst galaxies: comparing strong and weak IRAS emitter at 12 and 25 μm in the nearby Universe
The characteristics of the starburst galaxies from the Pico dos Diassurvey (PDS) are compared with those of the nearby ultraviolet (UV)bright Markarian starburst galaxies, having the same limit in redshift(vh < 7500 km s-1) and absolute B magnitude(MB < -18). An important difference is found: theMarkarian galaxies are generally undetected at 12 and 25 μm in IRAS.This is consistent with the UV excess shown by these galaxies andsuggests that the youngest star-forming regions dominating thesegalaxies are relatively free of dust.The far-infrared selection criteria for the PDS are shown to introduce astrong bias towards massive (luminous) and large size late-type spiralgalaxies. This is contrary to the Markarian galaxies, which are found tobe remarkably rich in smaller size early-type galaxies. These resultssuggest that only late-type spirals with a large and massive disc arestrong emitters at 12 and 25 μm in IRAS in the nearby Universe.The Markarian and PDS starburst galaxies are shown to share the sameenvironment. This rules out an explanation of the differences observedin terms of external parameters. These differences may be explained byassuming two different levels of evolution, the Markarian being lessevolved than the PDS galaxies. This interpretation is fully consistentwith the disc formation hypothesis proposed by Coziol et al. to explainthe special properties of the Markarian SBNG.

Far-Infrared Census of Starburst-Seyfert Connection
Far-infrared flux densities are newly extracted from the IRAS databasefor the Revised Shapley-Ames and CfA complete samples of Seyfertgalaxies. These data are used to classify the Seyfert galaxies intothose where the far-infrared continuum emission is dominated by theactive galactic nucleus (AGN), circumnuclear starburst, or host galaxy.While AGN-dominant objects consist of comparable numbers of Seyfert 1and 2 galaxies, starburst- and host-dominant objects consistpreferentially of Seyfert 2 galaxies. Thus, in addition to the dustytorus, the circumnuclear starburst region and host galaxy are importantin hiding the broad-line region. Morphologically, starburst-dominantSeyfert galaxies are of later types and more strongly interacting thanAGN-dominant Seyfert galaxies. In a later type galaxy, the AGN centralengine has a lower Eddington luminosity, and the gaseous content ishigher. The gas is efficiently supplied to the starburst via agalaxy-galaxy interaction. Morphologies of host-dominant Seyfertgalaxies are of various types. Since starbursts in Seyfert galaxies areolder than those in classical starburst galaxies, we propose anevolution from starburst to starburst-dominant Seyfert to host-dominantSeyfert for a late-type galaxy. An evolution from AGN-dominant Seyfertto host-dominant Seyfert is proposed for an early-type galaxy. Thesesequences have durations of a few times 108 yr and occurrepeatedly within a galaxy during its evolution from a late type to anearly type.

Rotation curves and metallicity gradients from HII regions in spiral galaxies
In this paper we study long slit spectra in the region of Hαemission line of a sample of 111 spiral galaxies with recognizable andwell defined spiral morphology and with a well determined environmentalstatus, ranging from isolation to non-disruptive interaction withsatellites or companions. The form and properties of the rotation curvesare considered as a function of the isolation degree, morphological typeand luminosity. The line ratios are used to estimate the metallicity ofall the detected HII regions, thus producing a composite metallicityprofile for different types of spirals. We have found that isolatedgalaxies tend to be of later types and lower luminosity than theinteracting galaxies. The outer parts of the rotation curves of isolatedgalaxies tend to be flatter than in interacting galaxies, but they showsimilar relations between global parameters. The scatter of theTully-Fisher relation defined by isolated galaxies is significantlylower than that of interacting galaxies. The [NII]/Hα ratios, usedas a metallicity indicator, show a clear trend between Z andmorphological type, t, with earlier spirals showing higher ratios; thistrend is tighter when instead of t the gradient of the inner rotationcurve, G, is used; no trend is found with the change in interactionstatus. The Z-gradient of the disks depends on the type, being almostflat for early spirals, and increasing for later types. The[NII]/Hα ratios measured for disk HII regions of interactinggalaxies are higher than for normal/isolated objects, even if all thegalaxy families present similar distributions of Hα EquivalentWidth. Tables 3 and 4 and Figs. 6, 7 and 21 are only available inelectronic form at http://www.edpsciences.org. Table 5 is only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/389 Based on dataobtained Asiago/Ekar Observatory. Also based on observations made withINT operated on the island of La Palma by ING in the SpanishObservatorio del Roque de Los Muchachos of the Instituto deAstrofísica de Canarias.

Local velocity field from sosie galaxies. I. The Peebles' model
Pratton et al. (1997) showed that the velocity field around clusterscould generate an apparent distortion that appears as tangentialstructures or radial filaments. In the present paper we determine theparameters of the Peebles' model (1976) describing infall of galaxiesonto clusters with the aim of testing quantitatively the amplitude ofthis distortion. The distances are determined from the concept of sosiegalaxies (Paturel 1984) using 21 calibrators for which the distanceswere recently calculated from two independent Cepheid calibrations. Weuse both B and I-band magnitudes. The Spaenhauer diagram method is usedto correct for the Malmquist bias. We give the equations for theconstruction of this diagram. We analyze the apparent Hubble constant indifferent regions around Virgo and obtain simultaneously the Local Groupinfall and the unperturbed Hubble constant. We found:[VLG-infall = 208 ± 9 km s-1] [\log H =1.82 ± 0.04 (H ≈ 66 ± 6 km s-1Mpc-1).] The front side and backside infalls can be seenaround Virgo and Fornax. In the direction of Virgo the comparison ismade with the Peebles' model. We obtain: [vinfall} =CVirgo/r0.9 ± 0.2] withCVirgo=2800 for Virgo and CFornax=1350 for Fornax,with the adopted units (km s-1 and Mpc). We obtain thefollowing mean distance moduli: [μVirgo=31.3 ± 0.2(r=18 Mpc )] [μFornax=31.7 ± 0.3 (r=22 Mpc). ] Allthese quantities form an accurate and coherent system. Full Table 2 isonly available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/57

The Ursa Major cluster of galaxies - III. Optical observations of dwarf galaxies and the luminosity function down to MR=-11
Results are presented of a deep optical survey of the Ursa Majorcluster, a spiral-rich cluster of galaxies at a distance of 18.6Mpcwhich contains about 30 per cent of the light but only 5 per cent of themass of the nearby Virgo cluster. Fields around known cluster membersand a pattern of blind fields along the major and minor axes of thecluster were studied with mosaic CCD cameras on the Canada-France-HawaiiTelescope. The dynamical crossing time for the Ursa Major cluster isonly slightly less than a Hubble time. Most galaxies in the localUniverse exist in similar moderate-density environments. The Ursa Majorcluster is therefore a good place to study the statistical properties ofdwarf galaxies, since this structure is at an evolutionary stagerepresentative of typical environments, yet has enough galaxies thatreasonable counting statistics can be accumulated. The mainobservational results of our survey are as follows. (i) The galaxyluminosity function is flat, with a logarithmic slope α=-1.1 for-17

Supernova Type Ia Luminosities, Their Dependence on Second Parameters, and the Value of H0
A sample of 35 Type Ia supernovae (SNe Ia) with good to excellentphotometry in B and V, minimum internal absorption, and1200

Arcsecond Positions of UGC Galaxies
We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.

The I-Band Tully-Fisher Relation for SC Galaxies: 21 Centimeter H I Line Data
A compilation of 21 cm line spectral parameters specifically designedfor application of the Tully-Fisher (TF) distance method is presentedfor 1201 spiral galaxies, primarily field Sc galaxies, for which opticalI-band photometric imaging is also available. New H I line spectra havebeen obtained for 881 galaxies. For an additional 320 galaxies, spectraavailable in a digital archive have been reexamined to allow applicationof a single algorithm for the derivation of the TF velocity widthparameter. A velocity width algorithm is used that provides a robustmeasurement of rotational velocity and permits an estimate of the erroron that width taking into account the effects of instrumental broadeningand signal-to-noise. The digital data are used to establish regressionrelations between measurements of velocity widths using other commonprescriptions so that comparable widths can be derived throughconversion of values published in the literature. The uniform H I linewidths presented here provide the rotational velocity measurement to beused in deriving peculiar velocities via the TF method.

The I-Band Tully-Fisher Relation for SC Galaxies: Optical Imaging Data
Properties derived from the analysis of photometric I-band imagingobservations are presented for 1727 inclined spiral galaxies, mostly oftypes Sbc and Sc. The reduction, parameter extraction, and errorestimation procedures are discussed in detail. The asymptotic behaviorof the magnitude curve of growth and the radial variation in ellipticityand position angle are used in combination with the linearity of thesurface brightness falloff to fit the disk portion of the profile. TotalI-band magnitudes are calculated by extrapolating the detected surfacebrightness profile to a radius of eight disk scale lengths. Errors inthe magnitudes, typically ~0.04 mag, are dominated by uncertainties inthe sky subtraction and disk-fitting procedures. Comparison is made withthe similar imaging database of Mathewson, Ford, & Buchhorn, both aspresented originally by those authors and after reanalyzing theirdigital reduction files using identical disk-fitting procedures. Directcomparison is made of profile details for 292 galaxies observed incommon. Although some differences occur, good agreement is found,proving that the two data sets can be used in combination with onlyminor accommodation of those differences. The compilation of opticalproperties presented here is optimized for use in applications of theTully-Fisher relation as a secondary distance indicator in studies ofthe local peculiar velocity field.

A strong correlation between bar strength and global star forming activity in isolated barred galaxies
I have studied the relation between the global star formation activityand the bar structure in a sample of isolated barred galaxies. The starformation activity was quantified via the ratio between the IRAS fluxesat 25 mu m and 100 mu m. Two parameters were chosen to define the barstructure: the strength of the bar and the relative projected barlength. The strength of the bar was defined by epsilon_ {b}=10(1-b/a),where a and b are the projected semi-major and semi-minor bar axis. Therelative bar length was defined as: 2Lb/D25, whereL_ {b} is one half of the projected total bar length and D25is the diameter of the 25 mag arcsec-2 magnitude isophote inthe B band. We found a strong correlation between the star formationactivity and epsilon_ {b}. The regression line is given bylog(I25/I100)=-1.81+0.093 epsilon_ {b}, with acorrelation coefficient of 0.9. The link is not so evident between therelative projected bar length and the star formation activity. But, itis noted that there is enhanced star formation activity in galaxies withstrong bars and small relative bar lengths,0.1<2Lb/D25<0.22.

Starbursts in barred spiral galaxies. V. Morphological analysis of bars
We have measured the bar lengths and widths of 125 barred galaxiesobserved with CCDs. The dependence of bar strength (identified with baraxis ratio) on morphological type, nuclear activity, central and mid-barsurface brightness is investigated. The properties of the bars are bestexplained if the sample is divided into early- (< SBbc) and late-typegalaxies, and into active (starburst, Seyfert or LINER) and normalgalaxies. We find that galaxies with very long bars are mostly activeand that normal late-type galaxies have a distinct behavior from thethree other groups of galaxies. We confirm earlier findings that activelate-type galaxies tend to have both stronger and longer bars thannormal ones. An important result of this paper is that early-typegalaxies do not share this behavior: they all tend to have strong bars,whether they are active or not. We also find correlations between barstrength and relative surface brightness in the middle and at the edgeof the bar, which are not followed by normal late-type galaxies. Theseresults are interpreted in the light of recent numerical simulations andparadigms about galaxy evolution. They suggest that normal late-typegalaxies represent the first stage of galaxy evolution, and that bars inearly- and late-type galaxies do not have the same properties becausethey have a different origin. Based on observations obtained at the 2meter telescope of Observatoire du Pic du Midi, operated by INSU (CNRS)

Starbursts in barred spiral galaxies. III. Definition of a homogeneous sample of starburst nucleus galaxies
This paper presents optical long-slit spectroscopic observations of 105barred Markarian IRAS galaxies. These observations are used to determinethe spectral type (starburst or Seyfert) of emission-line regions in thenucleus and along the bar of the galaxies, in order to define ahomogeneous sample of Starburst Nucleus Galaxies (SBNGs). Our selectioncriteria (ultraviolet excess, far infrared emission and barredmorphology) have been very efficient for selecting star-forminggalaxies, since our sample of 221 emission-line regions includes 82%nuclear or extranuclear starbursts. The contamination by Seyferts is low(9%). The remaining galaxies (9%) are objects with ambiguousclassification (Hii or LINER). The dust content and Hα luminosityincrease towards the nuclei of the galaxies. No significant variation ofthe electron density is found between nuclear and bar Hii regions.However, the mean Hα luminosity and electron density in the barare higher than in typical disk Hii regions. We investigate differentmechanisms for explaining the excess of nitrogen emission observed inour starburst nuclei. There is no evidence for the presence of a weakhidden active galactic nucleus in our starburst galaxies. The cause ofthis excess is probably a selective enrichment of nitrogen in the nucleiof the galaxies, following a succession of short and intense bursts ofstar formation. Our sample of SBNGs, located at a mean redshift of ~0.015, has moderate Hα ( ~ 10(41) erg s(-1) ) and far infrared ( ~10(10) Lsun) luminosities. The types are distributed equallyamong early- and late-type giant spirals with a slight preference forSbc/Sc types because of their barred morphology. The majority (62%) ofSBNGs are isolated with no sign of gravitational interaction. In termsof distance, luminosity and level of interaction, SBNGs are intermediatebetween Hii galaxies and luminous infrared galaxies. Based onobservations obtained at the 1.93 meter telescope of Observatoire deHaute-Provence operated by INSU (CNRS). Tables 1, 3, 4, 5 and 6 are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies
We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.

A catalogue of spatially resolved kinematics of galaxies: Bibliography
We present a catalogue of galaxies for which spatially resolved data ontheir internal kinematics have been published; there is no a priorirestriction regarding their morphological type. The catalogue lists thereferences to the articles where the data are published, as well as acoded description of these data: observed emission or absorption lines,velocity or velocity dispersion, radial profile or 2D field, positionangle. Tables 1, 2, and 3 are proposed in electronic form only, and areavailable from the CDS, via anonymous ftp to cdsarc.u-strasbg.fr (to130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

HIPPARCOS calibration of the peak brightness of four SNe IA and the value of H_0
HIPPARCOS geometrical parallaxes allowed us to calibrate the CepheidPeriod-Luminosity relation and to compute the true distance moduli of 17galaxies. Among these 17 galaxies, we selected those which generatedtype Ia Supernovae (SNe Ia). We found NGC 5253, parent galaxy of 1895Band 1972E, IC 4182 and NGC 4536 parents of 1937C and 1981B,respectively. We used the available B-band photometry to determine thepeak brightness of these four SNe Ia. We obtained = -19.65 +/- 0.09. Then, we built a sample of 57SNe Ia in order to plot the Hubble diagram and determine its zero-point.Our result (ZPB = -3.16 +/- 0.10) is in agreement with otherdeterminations and allows us to derive the following Hubble constant:H0 = 50 +/- 3 (internal) km.s(-1}.Mpc({-1)) .

Galaxies with a UV excess in which supernovae have been observed.
Not Available

Constraining the Ages of Supernova Progenitors. I. Supernovae and Spiral Arms
We present the first results of a three-part study of supernova (SN)ages using positional age indicators in spiral galaxies. We havemeasured the positions of 90 Spectroscopically identified Type Ia andType II SNs (SNs Ia and SNs II) relative to spiral arms in their hostgalaxies, making a special effort to reduce inhomogeneity in the processof arm tracing for different galaxies. We find that SNs II are moretightly concentrated to the arms than SNs Ia, but both kinds of SNsoccur closer to arms than a random disk population. However, whencompared with the distribution of V and I light relative to the arms,the SNs Ia are no more tightly concentrated than the general stellarpopulation. This indicates that SNs Ia occur in a population old enoughto have diffused away from their formation regions.

Seyfert Galaxies. IV. Nuclear Profiles of Markarian Seyfert Galaxies from Hubble Space Telescope Images
We have examined the nuclear profiles of the Seyfert and non-SeyfertMarkarian galaxies in our near-infrared Hubble Space Telescope WF/PC-1snapshot survey. We find that nuclei of types 1-1.5 Seyfert galaxies aredominated by strong point sources, while those of Seyfert 2 and non-Seyfert Markarian galaxies tend to be resolved, less distinguished, andsimilar in shape to normal galaxy luminosity profiles. Two possibleinterpretations of this result for type 2 Seyfert galaxies are thattheir nuclear continuum sources are undetected in our bandpass,contributing less than 10% of the nuclear light (within 0.5 radius) inall cases or that their nuclear components are resolved and blend insmoothly with the brightness profile of the host galaxy's bulge. Sincespectroscopic studies support typical nuclear continuum fractionsdistinctly greater than 10%, the latter conclusion is clearlypreferable. If the continua observed in Seyfert 2 galaxies originate asnuclear light that is redirected into the line of sight by scattering,as predicted by unified models of active galactic nuclei, then thescattering regions must be extended. Simple simulations suggest thatthese regions must cover several tens of parsecs or more, in agreementwith estimates of the sizes of the scattering "mirrors" in other Seyfert2 galaxies. However, the similarity of the profiles of non-SeyfertMarkarian and type 2 Seyfert nuclei suggests that circumnuclear starformation may also be an important component in the nuclear profiles ofthe latter.

The radial distribution of supernovae in spiral galaxies.
Not Available

Effects of the interaction on the properties of spiral galaxies. I. The data.
We have obtained Johnson B V I images and long slit spectra along themajor axis of a sample of isolated spiral galaxies, and a sample ofspirals in isolated pairs. We present in this contribution thephotometric parameters (galactic orientation in the sky, totalmagnitudes and colors, color gradients, isophotal profiles and theirdecomposition in bulge and disk components) and the rotation curves ofthe observed galaxies. For some of the galaxies Hα images and/orspectra along the minor axis are also available and the data alsopresented here. The data we obtain are then compared with those reportedin the RC3 catalogue. The analysis of both samples and their comparisonwill be published separately.

A multifrequency radio continuum and IRAS faint source survey of markarian galaxies
Results are presented from a multifrequency radio continumm survey ofMarkarian galaxies (MRKs) and are supplemented by IRAS infrared datafrom the Faint Source Survey. Radio data are presented for 899 MRKsobserved at nu = 4.755 GHz with the National Radio Astronomy Observatory(NRAO)-Green Bank 300 foot (91 m) telescope, including nearly 88% ofthose objects in Markarian lists VI-XIV. In addition, 1.415 GHzmeasurements of 258 MRKs, over 30% of the MRKs accessible from theNational Aeronomy and Ionosphere Center (NAIC)-Arecibo, are reported.Radio continuum observations of smaller numbers of MRKs were made at10.63 GHz and at 23.1 GHz and are also presented. Infrared data from theIRAS Faint Source Survey (Ver. 2) are presented for 944 MRKs, withreasonably secure identifications extracted from the NASA/IPACExtragalactic Database. MRKs exhibit the same canonical infraredcharacteristics as those reported for various other galaxy samples, thatis well-known enhancement of the 25 micrometer/60 micrometer color ratioamong Seyfert MRKs, and a clear tendency for MRKs with warmer 60micrometer/100 micrometer colors to also possess cooler 12 micrometer/25micrometer colors. In addition, non-Seyfert are found to obey thewell-documented infrared/radio luminosity correlation, with the tightestcorrelation seen for starburst MRKs.

The Hubble Diagram for Supernovae of Type Ia. II. The Effect on the Hubble Constant of a Correlation between Absolute Magnitude and Light Decay Rate
New Hubble diagrams in B and V are derived for supernovae of type Ibased on light curves from the archive literature plus 13 new lightcurves with superior modern photometry observed in the CerroTololo/University of Chile program (Hamuy et al, 1995). The sample isrestricted to SNe Ia whose light curves are defined by photometrybeginning 5 days or less after maximum light and with (B - V)max <0.5 mag. Supernovae of known type Ib or Ic are also excluded. Theresulting Hubble diagrams, extending to redshifts of 30,00 km s^- 1^,have dispersions in absolute magnitude of 0.34 mag in B and 0.33 mag inV, confirming that spectroscopically "normal" (Branch et al. 1993) SNeIa are among the best standard candles known. A solution for the slopeof the Hubble diagram gives n(B) = 0.977 +/- 0.025 and n(V) = 1.020 +/-0.024 for the exponent in ν~D^n^, proving linearity of the expansionfield to a high level. The residuals in magnitude from the ridge line ofthe Hubble diagram are compared with the light decay rate during thefirst 15 days to test the correlation between the two suggested byPskovskii and by Phillips. The strongest possible correlation using theextant data has a slope 3 times smaller than that derived by Phillips,and 2 times smaller than suggested by Hamuy et al., leading to adecrease of less than 10% in the distance scale based on the present(1995) SNe Ia calibration by means of three supernovae whose distancesare known from Cepheids in their parent galaxies. Applying the maximumpossible correction to M(max) for a Psko'vskii- Phillips effect wouldgive Hubble constants of H_0_(B)<= 54 +/- 4 km s^-1^ Mpc^-1^, andH_0_(V) <= 59 +/- 4 km s^-1^ Mpc^-1^, where the errors are internal.It is argued that the absence of measurable bias effects in the Hubblediagrams shows that the three local (nearest) SNe Ia presentlycalibrated via Cepheid distances cannot all be overluminous relative tothe average of more distant SNe. If they are underluminous, which mustbe the case by the statistics of the Malmquist effect if the largedispersion in M(max) for SNe Ia claimed by Hamuy et al. applies to thecalibrators, then the value of H_0_ = 52 km s^-1^ Mpc^-1^ given by Sahaet al. is an upper limit to the Hubble constant.

The blue anbd visual absolute magnitude distributions of Type IA supernovae
Tully-Fisher (TF), surface brightness fluctuation (SBF), and Hubble lawdistances to the parent galaxies of Type Ia supernovae (SNs Ia) are usedin order to study the SN Ia blue and visual peak absolute magnitude(MB and MV) distributions. We propose twoobjective cuts, each of which produces a subsample with small intrinsicdispersion in M. One cut, which can be applied to either band,distinguishes between a subsample of bright events and a smallersubsample of dim events, some of which were extinquished in the parentgalaxy and some of which were intrinsically subluminous. The brightevents are found to be distributed with an observed dispersions of 0.3less than or approximately = Sigmaobs less than orapproximately = 0.4 about a mean absolut magnitude (M-barB orM-barV). Each of the dim SNs was spectroscopically peculiarand/or had a red B-V color; this motivates the adoption of analternative cut that is based on B-V rather than on M. To wit, SNs Iathat are both known to have -0.25 less than B-V less than + 0.25 and notknown to be spectroscopically peculiar show observational dispersion ofonly Sigmaobs(MB) =Sigmaobs(MV) = 0.3. Because characteristicsobservational errors produce Sigmaerr(M) greater than 0.2,theintrinsic dispersion among such SNs Ia is Sigmaint(M) lessthan or approximately = 0.2. The small observational dispersionindicates that SNs Ia, the TF relation, and SBFs all good relativedistances to those galaxies that produce SNs Ia. The conflict betweenthose who use SNs Ia in order to determine the value of the Hubbleconstant (H0) and those who use TF and SBF distances todetermine H0 results from discrepant calibrations.

The UV properties of normal galaxies. III. Standard luminosity profiles and total magnitudes.
In the previous papers of this series we collected and reduced to thesame system all the available photometric data obtained in theultraviolet (UV) range for normal (i.e. non active) galaxies. Here weuse these data to derive standard UV luminosity profiles for threemorphological bins (E/S0; Sa/Sb; Sc/Sd) and extrapolated totalmagnitudes for almost 400 galaxies. We find that: 1) the UV growthcurves are well matched by the B-band revised standard luminosityprofiles, once a proper shift in the effective radius is applied, and 2)the UV light in early-type galaxies is more centrally concentrated thanthe visible light.

The UV properties of normal galaxies. II. The ``non-IUE'' data.
In the last decade several satellite and balloon borne experiments havecollected a large number of ultraviolet fluxes of normal galaxiesmeasured through apertures of various sizes and shapes. We havehomogenized this data set by deriving scale corrections with respect toIUE. In a forthcoming paper these data will be used to derive standardluminosity profiles and total magnitudes.

Studies of multiple supernovae in spiral galaxies.
We have compiled a sample of 667 spiral galaxies selected from theSecond Reference Catalogue of Bright Galaxies (RC2) (de Vaucouleurs etal. 1976). 169 supernovae (SNe) were discovered up to 31 Dec., 1992 inthe entire galaxy sample, and two or more SNe have been found in 30galaxies. We have taken into account several selection effects,i.e. theeffects of Hubble types, luminosity, inclination and distance of thegalaxies, to check whether the frequency distribution of SNe follow aPoisson distribution, and whether the deviation from Poissondistribution are due to `burst of star formation' as proposed by Ritcher& Rosa (1988, hereafter RR). It is found that after considering theeffect of luminosity and distance of the galaxies, more homogeneousgalaxy samples with the same Hubble types and inclination range havesignificantly smaller deviation from a Poisson distribution. Some of thesubsamples have acceptable Poisson distributions. The distinctionbetween the supernova(SN) frequency of `SN fast producer' galaxies andnormal galaxies is found to be 4~6 times, which is significantly smallerthan that proposed by RR (70 times!), and can be regarded asfluctuations of SN frequencies of different galaxies. We suggest thatthere is no need to consider some of the galaxies as `fast producers ofSNe' and that the deviation from Poisson distribution can be interpretedas joint effects of star formation, Hubble types, luminosity,inclinationand distance of the galaxies. We have also done an analysis of theradial distribution of SNe in their parent galaxies. There is anindication that multiple SNe are located farther from the nuclei oftheir parent galaxies, which is a further evidence to reject theexistence of `fast producers of SNe'.

Distribution of supernovae relative to spiral arms and H II regions
We have studied the association of supernovae in spiral galaxies withsites of recent stars formation -- sprial arms and H II regions. It isshown that supernovae (SNe) of Types Ia, Ib, and II exhibitconcentration to spiral arms and their distributions over the distanceto the nearest spiral arm do not differ significantly. This result isconfirmed by a Kolmogorov-Smirnov test comparison with the distancedistributions, expected if SNe are distributed randomly inside the modelgalaxy. SNe of types Ib and II show a strong concentration towards H IIregions, while distribution of SNe Ia can be explained by chancesuperposition. All studied distributions of SNe Ib and II show strikingsimilarity, which suggests that their progenitors are massive stars withsimilar ages and initial masses. The association of SNe Ia with spiralarms suggests that their progenitors in spiral galaxies are likely to beintermediate mass stars.

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Ursa Major
Ascensió Recta:11h41m16.90s
Declinació:+47°41'26.0"
Dimensions aparents:1.95′ × 1.445′

Catàlegs i designacions:
Noms Propis   (Edit)
NGC 2000.0NGC 3811
HYPERLEDA-IPGC 36265

→ Sol·licitar més catàlegs i designacions de VizieR